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On convergence of Weak Greedy Algorithms!

E.D. LivsHiTZ AND V.N.TEMLYAKOV

Moscow State University, Moscow, Russsia//
University of South Carolina, Columbia, SC, USA

1. INTRODUCTION

This paper is devoted to investigation of Weak Greedy Algorithms (WGA) intro-
duced in [T]. We remind some notations and definitions from the theory of greedy
algorithms. Let H be a real Hilbert space with an inner product (-, -) and the norm
||| := (x,z)'/2. We say a set D of functions (elements) from H is a dictionary if
each g € D has norm one (||g|]| = 1) and spanD = H. We give now the definition of
WGA (see [T]). Let a sequence 7 = {tx}2>, 0 < tr <1, be given.

Weak Greedy Algorithm. We define fj := f. Then for each m > 1, we induc-
tively define:

1). oI, € D is any satisfying

[{(Fr—1s Pm)| = tm sup [(f—1, 9);

g€eD
2).
Jon = Jo1 = (o1 o) P
3).
Gr.(f,D) = Z< 105 -
j=1

The following theorem has been proven in [T].

Theorem A. Assume

(L1) IR

k=1

Then for any dictionary D and any f € H we have
i [|f - GL(£.D)] = 0.

In Section 2 of this paper we prove the following theorem.

IThis research was supported by the National Science Foundation Grant DMS 9970326 and
by ONR Grant N00014-91-J1343



2 E.D. LIVSHITZ AND V.N.TEMLYAKOV

Theorem 1. In the class of monotone sequences T = {tx}3>,, 1 >t1 >ty > -+ >
0, the condition (1.1) is necessary and sufficient for convergence of Weak Greedy
Algorithm for each f and all Hilbert spaces H and dictionaries D.

In Section 3 we consider another particular case of sequences 7. Let N :=

{nk}2 1, n1 <mn2 <..., be a given subsequence of natural numbers and 0 < ¢ < 1.
We define
TNt i={tn, : tn, =t and t,=0, ng<n<ng, k=12...}

It is convenient for us to impose some regularity restrictions on N. We consider
the class M of sequences

M= {{n )2, 0 Mg Nk >N —Np_1; Nppne—1 <np, kE=2,...}

We prove in Section 3 the following theorem.

Theorem 2. In the class of sequences T(N,t), N € M, the condition

(I) S (et o
k=1

1s necessary and sufficient for convergence of Weak Greedy Algorithm for each f
and all Hilbert spaces H and dictionaries D.

2. PrROOF OF THEOREM 1

The sufficiency of condition (1.1) for convergence follows from Theorem A. We
prove here the necessity part in Theorem 1. Let H be a Hilbert space with an
orthonormal basis {e;}32;. For two elements e;, e;, i # j, and for a positive

number ¢ < 1/3 we define the procedure which we call "equalizer” and denote
E(ei,ej,t).
Equalizer E(e;,e;,t). Denote fy := e; and g1 := age;— (1—a?)/2e; with oy = ¢.

Then ||g1|| = 1 and (fo,g1) = t. We define the sequences fi,..., fN; g2,--.,9N;
Qg,...,an inductively:

Jni=fn1— <fn71agn>gn§ In+1 ‘= Ony1€; — (1 - O‘i—i—l)l/zej

with au,+1 satisfying
<fnagn+1>:t, n=12,....

Let f, = ane; + bye; and N := N; be the number such that
an—1—by_1>V2t, an—by < V2t
Then we modify the N-th step as follows. We take gy := 27%/2(e; — e;j) and

v =fv-1—{fv-1,9N)9N

It is clear that than ay = by and

t S <fN—1agN> S 2t.



We list here the following simple relations

Apt1 = Ap — tQpt1;  bpp1 =bp + t(l - ai—i—l)l/ga n<N-—-1;

(2.1) Upt1 — bpt1 = @ — by — t(aer + (1 — 04721“)1/2), n<N -1,

[fnsall® = I£all* =%, n <N -1

Relation (2.1) and the inequality 1 < z + (1 —22)/2 < 21/2 0 < & < 1, imply that
(2.2) N <1/t

and
N2 > | F vl — 482 > || F]? — ¢ — 3¢

This gives for ¢ < 1/3 that
IFn1? = 11117 - 2t.

It is clear that E(e;,e;,t) is a WGA with regard to the dictionary e;, g1,92,...,9n
with the ”weakness” parameter ¢.
Let 1/3 >ty > to > --- > 0 be such that

ootk
2. —
(2.3) ;k«

with € > 0 to be chosen later. Then

itzs < 2e.
s=0

We define WGA and a dictionary D as follows. We begin with f := e; and apply
E(ey,es,t). After Ny, > 1 steps we get g9, ... ,g?vtl and

f1 = ci1(e1 + e2)

with the properties
1A > 1717 = 2t15 (e1)® < 1/2.

We use now E(ey, e3,t2) and E(ez, eq,t2). After 2N;, > 2 steps we obtain g7, . . . ,g%Nt2
and
f? =ca(er +-- +eyq)

with the properties
P22 > 112 = 2605 (e2)® <272

After s iterations we get
ff=rcs(ex +---+eas)
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and apply E(e;,€itas,t2:), © = 1,2,...,2°. We make 2°N;,, > 2° steps and get
g3, - ,gSSNtzs and

fs+1 — Cs+1(61 + ... +€25+1)

with the properties

IFFHE 2 A = 20— 2t — e = 2t 21 =23 Tt 21— de

s=1

(Cs+1)2 S 2—3—1-

Choosing € = 3 we see that [|f*|| > 1/2 for all s.
Thus we get that the WGA with 7 satisfying (2.3) does not converge for f = e;
with regard to the dictionary

DZU@kU U 9i-

keN §>0;1<I<25 Ny,

We will show now how the general case
— t
S0
k=1
can be reduced to the case (2.3). We find n such that

S
Z tzs < €,
s=n

take f = e1+- - -+egn and pick at the first 2" —1 steps ey, ..., e9n 1 as approximating
elements from the dictionary. Then we use the described above procedure with
f = ean instead of e; with the natural change in indices.

3. PROOF OF THEOREM 2

We consider here the case of 7 = {t,,}°° ; of the form
(3.1) tn, =t and ¢, =0, nr<n<ngy, k=1,2...

for a given subsequence n; < ng < .... Theorem A implies that the Weak Greedy
Algorithm with the above 7 converges if

o0
Z 1/ng = oco.
k=1

Theorem 2 shows that the above condition can be replaced by a weaker one. We
begin with the proof of the sufficiency part of Theorem 2.



Lemma 3.1. In the class M of sequences
M= {{ng}52, : Mpgr—np > Np—np_1; Npginko1 <na, k=2,...}

the following two conditions are equivalent

oo N 1/2
nk+1 nk
(I) > = 00;
k=1
Nk
(I1) ¥{a;} €l2  liminf ay, Y a;=0.
j=1

Remark 3.1. We point out here that in the proof of (I) = (II) in Lemma 3.1 we
use only the property of boundedness of ng1/ng:

(B) ¢ . VkeN, Mg
ng

Thus in the sufficiency part of Theorem 2 the assumption {n;}72,; € M can be
replaced by a weaker assumption (B). We note also that in the proof of (I1) = (I)
in Lemma 3.1 we use only the property of convexity:

(C) Nht1 — N > N — N 1.

Proof of Lemma 3.1. Let us prove first that (I) implies (II). We will prove the
following a little stronger statement than (II)

fo'e) g
(3.2) Z N1 — Nk) nk_;1|a/nk| Z |aj| < oo.
k=1 Jj=1

It is known (see [Z],Ch.1,S.9) that {a;}32, € [ implies that

oo : 1 -
(3.3) {bn}ai €lp with by =~ Z |a;|.
71=1
We observe first that
(3.4) > (kg1 — )by, < oo
k=1

Indeed, for any m > n we have
mb,, > nb,

and for ny < m < nk41 we have for {n;}2, € M

Np+1

bnk S nk

bm < Cbyy,
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with a constant C independent of k& and m. Therefore

Nkg41— 1

(3.5) (nps1 — )bl <C* Y b7,

m=ng

Combining (3.3) and (3.5) we get (3.4).
We return to (3.2)

oo
> (g = )P | Z 5] = 3kt = 1) I, <
k=1 k=1

(Z az, )3 ( Z 1 — )b )2 < .
=1

k=1

Let us prove now that (II) implies (I). Assume the contrary that for {n;}3>, € M
we have

(3.6) Z Niy1 — i)t /2 ,;1 < 0.
k=1

We will construct a sequence {a;}32, € Iz such that

Nk
(3.7) hkn_l)g;f an, Z a; > 0.
Define
—1/2 —1/4_—1/2
tny = (1 — ) A% g = (g — k) g 2,

for
jE(nk,nk+1), k=1,2,....

Then (3.6) implies that {a;}32; € l2. We have from the definition of {a;}%2, that
Z aj Z (Tbk+1 _ nk)3/4n;1/2,
Jj€nK,mpy1)
Next, we obtain from here

Nk41

k
Z%ZZ > Z”l+1—nl3/4nfl/22

I=1 j€[ni,mi41)

k

—1/4 -1 —1/4 1/2 1/2
an+1—nk /(nl+1—nl)”z /2 > (Mge+1 — ) /Z zJ/r1 z/
=1

(k1 — N Mgy — Ty

This estimate and the definition of a,, implies (3.7). Lemma 3.1 is proved now.



7
Lemma 3.2. Assume that a sequence {n;}3>, € M satisfies (I). Let 0 < t < 1
and 7 = {t,}52 | satisfies (3.1). Then {f] _}3>, converges.

This lemma combined with the following simple modification of Lemma 2.1 from
[T] give the sufficient part of the conclusion of Theorem 2.

Lemma 3.3. Assume that for some {ng}%,

o]

2 _
E Uy, = 0
k=1

Then if {f5 _1}5e, conveges it converges to zero.

Proof of Lemma 3.2. This proof is similar to the corresponding arguments from
[T]. We present it here for selfcompleteness of this paper. It is easy to derive from
the definition of WGA the following two relations

(3.8) =f=> (fl 1, 65)¥7,
7j=1

(3.9) £l = LI = Z| i—1%5)]

Denote a; := [(f]_q,¢})|. We get from (3.9) that

o0
> ad < | fI
j=1

We take any two indecies n < m and consider

17 = £l = 1A = W mll® = 2007 = fs £)-
Denote
Using (3.8) and the definition of the WGA we get for all n < m that

m m+1

(3.10) Orm < D N0 @D e < 720 3 ay

t
j=n+1 m+l g

Specifying n = n; — 1 and m = ni — 1 we get from (3.10) that for any | < k

ng
(3.11) O tme1 <t 'an, Y aj.

The relation (3.11) and Lemma 3.1 imply that

=0.

lim max 6!

n;— 1nk 1
k— o0 I<k

It remains to use the following simple lemma (see [T]).
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Lemma 3.4. Let in a Banach space X a sequence {x,,}5 , be given. Assume that
for any k,l we have

ek — il|> = yr — y1 + Ok,
with {yn }o is a convergent sequence of real numbers and 0y ; satisfying the prop-

erty

lim max 8, ; = 0.
—_ k<l ’

l—o0
Then {x,}52 { converges.
We proceed now to the necessity part of Theorem 2. We will need the following
simple properties of sequences from M. Denote

Ang := ngy1 — ng.

Then by monotonicity of {An} we have

251
(3.12) Ngs —ngemr =y Ang < 2°7 Any.
k=2s—1
and
2511
Ngs — Ngs—1 > Z Ang = ngs—1 — nyq,
k=1
(3.13) Ngs — Ngs—1 > (Ngs — M) /2.

Combining (3.12) and (3.13) we get
Angs > 27%(ngs —mq)
and
(3.14) (Angs) ™12 < 25(Angs )% (ngs —ny) ™t
Next, {(Ang)'/?/n;} is a monotone sequence:
(Anp)Y? /ny, = nlzl/z(Ank/nk)l/Q, ne T, Ang/ng | .
Thus the following two conditions are equivalent

0 A 1/2
Z 7( nk) < 00,
k=1 'k

)1/2
(3.15) gr(Bn2) 7
5—0 T9s



It is clear that (3.14) and (3.15) imply

oo

Z(A'I’Lzs)_l/g < 0.

s=0

The construction of the corresponding counterexample is similar to that from Sec-
tion 2. We assume that

Z(A’I’Lgs)il/2 <€
s=0

with small enough ¢, say, e = 3/16. Define a new sequence 7’ := {t] }>° ; with
t = (Ange)™Y2, me25,2°Fl), s=0,1,....

Then ¢, | 0 and the WGA from Section 2 with 7/ and f := e; reduces the square
of the norm of f by at most 2e. We modify now the above WGA. At each step ny
we replace WGA by Pure Greedy Algorithm (PGA) what means that at each step
ny we throw away a term cje; with, say, the biggest j. Let us estimate how much
do we reduce the square of the norm of f in this way. After s iterations we have

ff=csler+---+en,), Ns<2° (cs)? <275,

Relation (2.2) implies, that working on (s + 1)-st iteration we will make at most
N, /ty. steps of the algorithm. It is easy to see that after s iterations we have made
at least 2° steps. Therefore we will use PGA at most

N +1< el +1
ths Angs ~ (Angs)1/2
times during (s + 1)-st iteration. Thus the norm || -||? will be reduced by at most
——(1427°
Bzt 27

what gives the total reduction due to PGA steps at most 2¢. This reduction com-
bined with the reduction of WGA at other steps sums up to at most 4e. Choosing
e small enough (say € = 3/16) we get divergence of the defined above WGA.

Remark 3.2. In the proof of the necessity part of Theorem 2 we have used the
convexity property (C) and also the monotonicity of {(Ang)/?/ny} what is weaker
than the assumption {ng}>, € M.
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